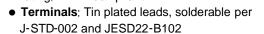
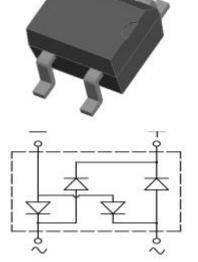
Bridge Rectifiers

Features


- UL recognition, file #E313149
- Ideal for automated placement
- High surge current capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

Typical Applications

General purpose use in high frequency AC/DC bridge full wave rectification for power supply, lighting ballast, battery charger, home appliances, office equipment, and telecommunication applications.


Mechanical Data

Package: MBS
 Molding compound meets UL 94 V-0 flammability rating, RoHS-compliant

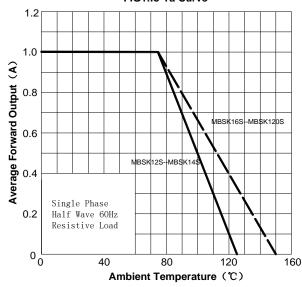
• Polarity: As marked on body

■ Maximum Ratings (Ta=25 °C Unless otherwise specified)

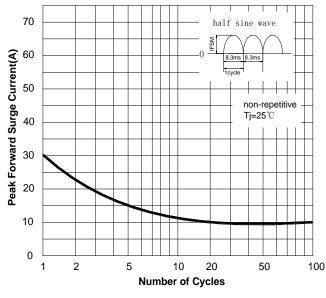
PARAMETER	SYMBOL	UNIT	MBSK12S	MBSK14S	MBSK16S	MBSK18S	MBSK110S	MBSK115S	MBSK120S
Device marking code			MBSK12S	MBSK14S	MBSK16S	MBSK18S	MBSK110S	MBSK115S	MBSK120S
Repetitive peak reverse voltage	VRRM	V	20	40	60	80	100	150	200
Average rectified output current @ 60Hz Half-sine wave, Resistance load, Ta (FIG.1)	Ю	Α	1.0						
Surge(non-repetitive)forward current @ 60Hz half-sine wave,1 cycle, Tj=25°C	IFSM	Α	30						
Current squared time @1ms≤t≤8.3ms Tj=25°C,rating of per diode	l ² t	A ² s	3.7						
Storage temperature	Tstg	$^{\circ}$	-55 ~+150						
Junction temperature	Tj	$^{\circ}$	-55 ~+125						

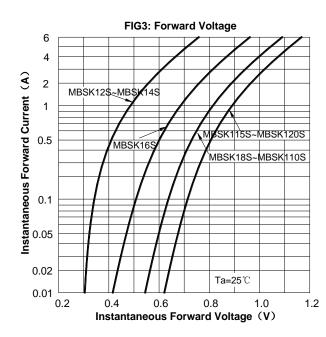
■ Electrical Characteristics (Ta=25°C Unless otherwise specified)

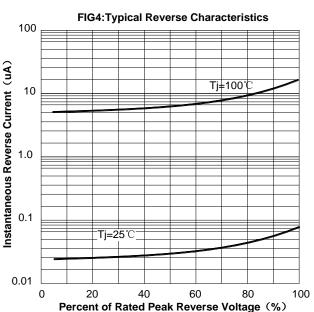
PARAMETER	SYMBOL	UNIT	TEST CONDITIONS	MBSK12S MBSK14S	MBSK16S	MBSK18S	MBSK110S	MBSK115SM	IBSK120S		
Maximum instantaneous forward voltage drop per diode	VF	٧	IFM=0.5A	0.50	0.70	0.8	35	0.90)		
Maximum DC reverse current at	IDDM	IDDM	IRRM		T _a =25°C	500			10	00	
rated DC blocking voltage per diode@ VRM=VRRM	IKKIVI	uA	Ta=100°C	10000			50	000			

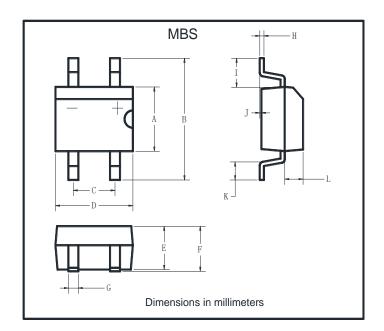

■ Thermal Characteristics (Ta=25°C Unless otherwise specified)

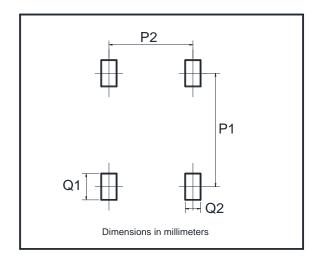

PARAMETER		SYMBOL	UNIT	MBSK12S	MBSK14S	MBSK16S	MBSK18S	MBSK110S	MBSK115S	MBSK120S
	Between junction and ambient, On alumina substrate	R _θ Ј-А		76.0						
Thermal Resistance	Between junction and ambient, On glass-epoxi substrate	RøJ-A	℃M				134.0			
	Between junction and lead	RøJ-L		20.0						


■ Ordering Information (Example)


PREFERED P/N	PACKING CODE	UNIT WEIGHT(g)	MINIIMUM PACKAGE(pcs)	INNER BOX QUANTITY(pcs)	OUTER CARTON QUANTITY(pcs)	DELIVERY MODE
MBSK12S-MBSK120S	F1	Approximate 0.12	2500	5000	40000	13' reel







■ Outline Dimensions

MBS					
Dim	Min	Max			
Α	3.60	4.00			
В	7.00	Max			
С	2.20	2.60			
D	4.50	4.90			
Е	2.30	2.70			
F	3.00	Max			
G	0.56	0.84			
Н	0.15	0.35			
I	1.10	2.12			
J	0.20 Max				
K	0.70	1.10			
L	0.95	1.53			

■ Suggested pad layout

Dim	Min
P1	6.00
P2	2.40
Q1	1.84
Q2	1.20

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Steifpower Technology products best suited to the customer's applications, they do not convey any license under any intellectual property rights, or any other rights, belonging to Steifpower Technology or third party. Steifpower Technology assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Steifpower Technology without notice due to product improvements or other reasons.

It is therefore recommended that customers contact Steifpower Technology or unauthorized Steifpower Technology for the latest product information before purchasing a productlisted herein.

The information described here may containtechnical inaccuracies or typographicalerrors.

Steifpower Technology assumes no responsibility for any damage, liability, or other loss rising from theseinaccuracies or errors.

Please also pay attention to information published by Steifpower Technologyby various means including our website home page (http://www.steifpower.com).

When using any or all of the information contained in these materials, including product data diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products.

Steifpower Technology assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Steifpower Technology is necessary to reprint or reproduce in whole or in part these materials.

Please contact Steifpower Technology or an authorized distributor for further details on these materials or the products contained herein.